РАБОЧАЯ ПРОГРАММА по предмету <u>«ГЕОМЕТРИЯ»</u>

для «9А» класса

срок реализации 2023-2024 учебный год Количество часов по учебному плану: 2 часа в неделю, всего 68 часов

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа основного общего образования по геометрии составлена на основе Фундаментального ядра содержания общего образования и Требований к результатам освоения основной общеобразовательной программы основного общего образования, представленных в Федеральном государственном образовательном стандарте общего образования.

Рабочая программа по геометрии для 9 класса разработана с учетом требований ФГОС ООО, утвержденным приказом Министерства образования и науки Российской Федерации от «17» декабря 2010 г. № 1897, пункта 18.2.2 приказа Минобрнауки России от31.12.2015 №1577 « О внесении изменений в ФГОС ООО, утверждённый приказом Министерства образования и науки РФ от 17.12.10 №1897, в соответствии с авторской программой Бутузов В.Ф. (Геометрия. Рабочая программа к учебнику Л.С. Атанасяна и других. 7–9 классы: пособие для учителей общеобразов. учреждений/ В.Ф. Бутузов.- 2-е изд.,дораб. — М.: Просвещение, 2013. — 31 с.) и ориентирована на использование УМК Л. С. Атанасяна и др.:

- 1. Геометрия: 7—9 кл. / Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др. М.: Просвещение, 2020.
- 2. Зив Б. Г. Геометрия: дидакт. материалы: 9 кл. / Б. Г. Зив, М. Мейлер. М.: Просвещение, 2016.
- 3. Изучение геометрии в 7, 8, 9 классах: метод. рекомендации: кн. для учителя / Л. С. Атанасян,
- В. Ф. Бутузов, Ю. А. Глаз-ков и др. М.: Просвещение, 2016.

Практическая значимость школьного курса геометрии обусловлена тем, что его объектом являются пространственные формы и количественные отношения действительного мира. Геометрическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе.

Геометрия является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественнонаучного цикла, в частности к физике. Развитие логического мышления учащихся при обучении геометрии способствует усвоению предметов гуманитарного цикла. Практические умения и навыки геометрического характера необходимы для трудовой деятельности и профессиональной подготовки школьников.

Развитие у учащихся правильных представлений о сущности и происхождении геометрических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте геометрии в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся, а также формированию качеств мышления, необходимых для адаптации в современном информационном обществе.

Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности развитого воображения, геометрия развивает нравственные черты личности (настойчивость, целеустремлённость, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументированно отстаивать свои взгляды, убеждения, а также способность принимать самостоятельные решения.

Геометрия существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников.

При обучении геометрии формируются умения и навыки умственного труда — планирование своей работы, поиск рациональных путей её выполнения, критическая оценка результатов. В процессе обучения геометрии школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки чёткого, аккуратного и грамотного выполнения математических записей.

Важнейшей задачей школьного курса геометрии является развитие логического мышления учащихся. Сами объекты геометрических умозаключений и принятые в геометрии правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно вскрывают механизм логических построений и учат их применению. Тем самым геометрия занимает ведущее место в формировании научно-теоретического мышления школьников. Раскрывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, способствуя восприятию геометрических форм, усвоению понятия симметрии, геометрия вносит значительный вклад в эстетическое воспитание учащихся. Её изучение развивает воображение школьников, существенно обогащает и развивает их пространственные представления.

Общая характеристика учебного предмета «Геометрия»

В курсе условно можно выделить следующие содержательные линии: «Геометрические фигуры», «Измерение геометрических величин», «Векторы», «Геометрия в историческом развитии».

Содержание разделов «Геометрические фигуры» и «Измерение геометрических величин» нацелено на получение конкретных знаний о геометрической фигуре как важнейшей математической модели для описания окружающего мира. Систематическое изучение свойств геометрических фигур позволит развить логическое мышление и показать применение этих свойств при решении задач вычислительного и конструктивного характера, а также практических.

Материал, относящийся к содержательной линии «Векторы», в значительной степени несёт в себе межпредметные знания, которые находят применение как в различных математических дисциплинах, так и в смежных предметах.

Линия «Геометрия в историческом развитии» предназначена для формирования представлений о геометрии как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.

Место учебного предмета «Геометрия» 9 класс в учебном плане

Учебный план на изучение геометрии в основной школе отводит 2 часа в неделю, всего 68 часов.

Планируемые результаты освоения учебного предмета «Геометрия» 9 класс

Личностные, метапредметные и предметные результаты освоения содержания курса математики.

Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования:

личностные:

- 1) формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов;
- 2) формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
 - 3) формирования коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
 - 4) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
 - 5) критичности мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
 - 6) креативность мышления, инициатива, находчивость, активность при решении геометрических задач;
 - 7) умение контролировать процесс и результат учебной математической деятельности;
 - 8) формирования способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

метапредметные:

- 1) умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
- 2) умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы;
- 3) умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
- 4) осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установление родовидовых связей;
- 5) умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
- 6) умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
- 7) умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы; умения работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;
- 8) формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
- 9) первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
- 10) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- 11) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

- 12) умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
- 13) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
- 14) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
- 15) понимать сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
- 16) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
- 17) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

предметные:

- 1) умение работать с геометрическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;
- 2) овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
- 3) овладение навыками устных, письменных, инструментальных вычислений;
- 4) овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;
- 5) усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;
- б)умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объёмов геометрических фигур;
- 7) умение применять полученные знания, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.

Планируемые результаты освоения учебного предмета «Геометрия» 9 класс

Наглядная геометрия.

Выпускник научится:

- 1) распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;
- 2) распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;
- 3) определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;
- 4) вычислять объём прямоугольного параллелепипеда. Выпускник получит возможность:
- 5) вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
- 6) углубить и развить представления о пространственных геометрических фигурах;
- 7) применять понятие развёртки для выполнения практических расчётов.

Геометрические фигуры

Выпускник научится:

- 1) пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
- 2) распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
- 3) находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);
- 4) оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;
- 5) решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;
 - 6) решать простейшие планиметрические задачи в пространстве.

Выпускник получит возможность:

- 7) овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек:
- 8) приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;
- 9) научиться решать задачи на построение методом геометрического места точек и методом подобия;
- 10) приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ.

Измерение геометрических величин

Выпускник научится:

- 2) вычислять длины линейных элементов фигур и их углы, используя формулы площадей фигур;
 - 3) вычислять площади треугольников, прямоугольников, параллелограммов;
 - 4) решать задачи на доказательство с использованием формул площадей фигур;
- 5) решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).

Выпускник получит возможность:

- 6) вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;
- 7) приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении задач на вычисление площадей многоугольников.

Координаты.

Выпускник научится:

- 1) вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;
- 2) использовать координатный метод для изучения свойств прямых и окружностей.

Выпускник получит возможность:

- 3) овладеть координатным методом решения задач на вычисление и доказательство;
- 4) приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;
- 5) приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисление и доказательство».

Векторы.

Выпускник научится:

1) оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;

- 2) находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;
- 3) вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.

Выпускник получит возможность:

- 4) овладеть векторным методом для решения задач на вычисление и доказательство;
- 5) приобрести опыт выполнения проектов на тему «Применение векторного метода при решении задач на вычисление и доказательство».

Содержание учебного предмета «Геометрия» 9 класс

Метод координат

Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.

Соотношения между сторонами и углами треугольника. Скалярное произведение векторов

Синус, косинус и тангенс угла от 0° до 180°; приведение к острому углу. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Формула, выражающая площадь треугольника через две стороны и угол между ними. Теорема косинусов и теорема синусов; примеры их применения для вычисления элементов треугольника. Теорема Стюарта и ее применение при решении задач. Скалярное произведение векторов. Угол между векторами.

Длина окружности и площадь круга

Правильные многоугольники. Вписанные и описанные окружности правильного многоугольника. Формулы, выражающие площадь правильного многоугольника через периметр и радиус вписанной окружности. Построение правильных многоугольников. Длина окружности. Длина дуги. Площадь круга и площадь сектора.

Движение

Примеры движений фигур. Параллельный перенос и поворот.

Об аксиомах геометрии

Беседа об аксиомах геометрии.

Начальные сведения из стереометрии

Предмет стереометрии. Геометрические тела и поверхности. Многогранники: призма, параллелепипед, пирамида, формулы для вычисления их объемов. Тела и поверхности вращения: цилиндр, конус, сфера, шар, формулы для вычисления их площадей поверхностей и объемов.

Тематический план

№	Тема	Количество
п/п		часов
	Повторение	8
1	Треугольники. Подобные треугольники. Соотношения между сторонами и	2
	углами треугольника.	
2	Параллельные и перпендикулярные прямые.	2
3	Четырехугольники. Площади.	2
4	Окружность. Углы и окружность. Вписанные и описанные треугольники и	2
	четырехугольники.	
Мето	д координат	10
5	Разложение вектора по двум неколлинеарным векторам.	1
6	Координаты точек и векторов.	1
7	Связь между координатами вектора и координатами его начала и конца	1
8	Простейшие задачи в координатах.	1
9	Уравнение линии на плоскости. Уравнение окружности.	1
10	Уравнение прямой.	2
11	Симметрия в координатах.	1
12	Решение задач по теме «Метод координат».	1
13	Контрольная работа№1 по теме «Метод координат»	1
Соот	15	
14	Синус, косинус и тангенс угла от 0° до 180°	1
15	Основное тригонометрическое тождество.	1
16	Формулы, связывающие синус, косинус, тангенс, котангенс одного и того	1
	же угла.	
17	Формулы приведения.	1
18	Теорема о площади треугольника. Формула, выражающая площадь	1
	треугольника через две стороны и угол между ними.	
19	Теорема синусов.	1
20	Теорема косинусов.	1
21	Теорема косинусов и теорема синусов; примеры их применения для	1
	вычисления элементов треугольника.	
22	Решение треугольников.	1
23	Измерительные работы.	1
24	Угол между векторами. Скалярное произведение векторов.	1
25	Скалярное произведение векторов в координатах.	1
26	Решение задач по теме «Соотношения между сторонами и углами	2

	треугольника»	
27	Контрольная работа №2 по теме «Соотношения меду сторонами и углами	1
	треугольника»	
Длина окружности и площадь круга		
28	Правильные многоугольники	1
29	Окружность, вписанная в правильный многоугольник	1
30	Окружность, описанная около прав многоугольника	1
31	Формулы, выражающие площадь правильного многоугольника через	1
	периметр и радиус вписанной окружности.	
32	Построение правильных многоугольников.	1
33	Длина окружности. Длина дуги.	2
34	Площадь круга и кругового сектора.	2
35	Связь между формулами для вычисления площадей круга и площадей	1
	вписанных и описанных правильных многоугольников.	
36	Решение задач.	1
37	Контрольная работа № 3 по теме «Длина окружности и площадь круга»	1
Движ	сение	7
38	Понятие движения. Примеры движений фигур.	1
39	Симметрия. Осевая симметрия, центральная симметрия.	1
40	Параллельный перенос.	1
41	Поворот.	1
42	Центральное подобие и его свойства.	1
43	Решение задач.	1
44	Контрольная работа №4 по теме «Движение»	1
Нача	льные сведения из стереометрии	4
45	Многогранники.	2
46	Тела и поверхности вращения.	2
Об ан	ссиомах геометрии	1
47	Об аксиомах геометрии	1
	орение курса геометрии 7-9 класс	11
48	Повторение. Треугольники.	1
49	Повторение. Параллельные прямые.	1
50	Повторение. Соотношения между сторонами и углами треугольника.	1
51	Повторение. Окружность.	1
53	Повторение. Длина окружности и площадь круга.	1
54	Повторение. Подобные треугольники.	1
55	Итоговая контрольная работа.	1
56	Повторение. Четырехугольники. Площадь.	1
57	Повторение. Векторы. Метод координат.	1
58	Повторение. Скалярное произведение векторов.	1
59	Обобщающий урок по темам курса геометрии.	1

Календарно-тематическое планирование

№	Тема	Характеристика основных видов деятельности	Дата	
урока		ученика (на уровне учебных действий)	План	Факт
Повтој	рение (8ч)	Формулировать определения и иллюстрировать		
1	Треугольники. Подобные треугольники.	понятия параллельные и перпендикулярные прямые,		
2	Соотношения между сторонами и углами треугольника.	окружность, вписанные и описанные треугольники и		
3	Перпендикулярные прямые.	четырехугольники понятия параллелограмма,		
4	Параллельные прямые.	прямоугольника, ромба, квадрата, трапеции.		
5	Четырехугольники. Площади.	Формулировать свойства треугольников и		
6	Четырехугольники. Площади.	использовать эти свойства при решении задач.		
7	Окружность. Углы и окружность.	Применять формулы для вычисления площадей		
8	Вписанные и описанные треугольники и четырехугольники.	треугольников, четырехугольников.		
Метод	координат (10 ч)			
9	Разложение вектора по двум неколлинеарным векторам.	Объяснять и иллюстрировать понятия		
10	Координаты точек и векторов.	прямоугольной системы координат, координат		
11	Связь между координатами вектора и координатами его начала	точки и координат вектора; выводить и		
	и конца.	использовать при решении задач формулы		
12	Простейшие задачи в координатах.	координат середины отрезка, длины вектора,		
13	Уравнение линии на плоскости. Уравнение окружности.	расстояния между двумя точками, уравнения		
14	Уравнение прямой.	окружности и прямой.		
15	Уравнение прямой.			
16	Симметрия в координатах.			
17	Решение задач по теме «Метод координат».			
18	Контрольная работа №1 по теме «Метод координат».			
Соотно	ошения меду сторонами и углами треугольника (15 ч)	Формулировать и иллюстрировать определения		
19	Синус, косинус и тангенс угла от 0° до 180°.	синуса, косинуса и тангенса углов от 0° до 180°;		
20	Основное тригонометрическое тождество.	выводить основное тригонометрическое тождество		
21	Формулы, связывающие синус, косинус, тангенс, котангенс	и формулы приведения; формулировать и		
	одного и того же угла.	доказывать теоремы синусов и косинусов,		
22	Формулы приведения.	применять их при решении треугольников;		
23	Теорема о площади треугольника. Формула, выражающая	объяснять, как используются тригонометрические		
	площадь треугольника через две стороны и угол между ними.	формулы в измерительных работах на местности;		
24	Теорема синусов.	формулировать определение угла между векторами		
25	Теорема косинусов.	и скалярного произведения векторов; выводить		
26	Теорема косинусов и теорема синусов; примеры их применения	формулу скалярного произведения через		
	для вычисления элементов треугольника.	координаты векторов; формулировать и		

27	Решение треугольников.	обосновывать утверждение о свойствах скалярного	
28	Измерительные работы.	произведения; использовать скалярное	
29	Угол между векторами. Скалярное произведение векторов.	произведение при решении задач.	
30	Скалярное произведение векторов в координатах.		
31	Решение задач по теме «Соотношения меду сторонами и		
	углами треугольника».		
32	Решение задач по теме «Соотношения меду сторонами и		
	углами треугольника».		
33	Контрольная работа №2 по теме «Соотношения меду		
	сторонами и углами треугольника».		
Длина	окружности и площадь круга (12 ч)	Формулировать определение правильного	
34	Правильные многоугольники.	многоугольника; формулировать и доказывать	
35	Окружность, вписанная в правильный многоугольник.	теоремы об окружностях, описанной около	
36	Окружность, описанная около прав многоугольника.	правильного многоугольника и вписанной в него;	
37	Формулы, выражающие площадь правильного многоугольника	выводить и использовать формулы для вычисления	
	через периметр и радиус вписанной окружности.	площади правильного многоугольника, его стороны	
38	Построение правильных многоугольников.	и радиуса вписанной окружности; решать задачи на	
39	Длина окружности. Длина дуги.	построение правильных многоугольников;	
40	Длина окружности. Длина дуги.	объяснять понятия длины окружности и площади	
41	Площадь круга и кругового сектора.	круга; выводить формулы для вычисления длины	
42	Площадь круга и кругового сектора.	окружности и длины дуги, площади круга и	
43	Связь между формулами для вычисления площадей круга и	площади кругового сектора; применять эти	
	площадей вписанных и описанных правильных	формулы при решении задач.	
	многоугольников.		
44	Решение задач по теме «Связь между формулами для		
	вычисления площадей круга и площадей вписанных и		
	описанных правильных многоугольников».		
45	Контрольная работа №3 по теме «Длина окружности и площадь		
	круга».		
	Движение (7 ч)	Объяснять, что такое отображение плоскости на	
46	Понятие движения. Примеры движений фигур.	себя и в каком случае оно называется движением	
47	Симметрия. Осевая симметрия, центральная симметрия.	плоскости; объяснять, что такое осевая симметрия,	
48	Симметрия. Осевая симметрия, центральная симметрия.	центральная симметрия, параллельный перенос и	
49	Параллельный перенос.	поворот; обосновывать, что эти отображения	
50	Поворот.	плоскости на себя являются движениями; объяснять,	
51	Решение задач по теме «Движение».	какова связь между движениями и наложениями;	
52	Контрольная работа №4 по теме «Движение».	иллюстрировать основные виды движений, в том	
**		числе с помощью компьютерных программ.	
Начал	ьные сведения из стереометрии (4 ч)	Объяснять, что такое многогранник, его грани,	

		T	1
53	Предмет стереометрии. Геометрические тела и поверхности.	рёбра, вершины, диагонали, какой многогранник	
	Многогранники.	называется выпуклым, что такое п-угольная призма,	
54	Многогранники. Параллелепипед. Призма. Пирамида.	её основания, боковые грани и рёбра, какая призма	
55	Тела и поверхности вращения. Конус. Цилиндр. Сфера. Шар.	называется прямой и какая наклонной, что такое	
56	Формулы для вычисления площадей поверхности и объемов	высота призмы, какая призма называется	
	многогранников и тел вращения.	параллелепипедом и какой параллелепипед	
		называется прямоугольным; формулировать и	
		обосновывать утверждения о свойстве диагоналей	
		параллелепипеда и о квадрате диагонали	
		прямоугольного параллелепипеда; объяснять, что	
		такое объём многогранника	
Об ак	ссиомах геометрии (1 ч)		
57	Об аксиомах геометрии.		
Повт	орение (11ч)		
58	Повторение. Треугольники.		
59	Повторение. Параллельные прямые.		
60	Повторение. Соотношения между сторонами и углами		
	треугольника.		
61	Повторение. Окружность.		
62	Повторение. Длина окружности и площадь круга.		
63	Повторение. Подобные треугольники.		
64	Итоговая контрольная работа.		
65	Повторение. Четырехугольники. Площадь.		
66	Повторение. Векторы. Метод координат.		
67	Повторение. Скалярное произведение векторов.		
68	Обобщающий урок по темам курса геометрии.		